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spurious relationships. To solve this we can use partial correlation. In this paper we
construct both correlation and partial correlation networks from S&P500 returns and
compare and contrast the two. Firstly we show that the partial correlation networks
have a smaller and much less variable intensity than the correlation networks, but in
fact are less stable. We look at the centrality of the various sectors in the graph using
degree centrality and eigenvector centrality, finding that sector centralities move
together during the 2009 market crash and that the financial sector generally has a
higher mean centrality over most of the dataset. Exploring the use of these centrality
measures for portfolio construction, we shown there is mild correlation between the
in-sample centrality and the out of sample Sharpe ratio but there is negative
correlation between the in-sample centrality and out of sample risk. Finally we use a
community detection method to study how the networks reflect the underlying sector
structure and study how stable these communities are over time.

Keywords: Correlation network, Financial networks, Portfolio optimization, Partial
correlation, Covariance estimation

Introduction

Financial markets are a critical part of modern economies and help us to understand the
current consensus on how various constituent companies are performing. Asset prices
are an equilibrium reached by the interactions between external information, historic per-
formance and trader sentiments. Because of this, they are widely regarded as incredibly
complex systems. Networks are a popular method of representing a complex system due
to their ability to express interactions or relationships between components in a simple
model that is widely applicable to many different fields. Networks inferred from these
disparate fields share surprisingly common properties, including heavy tailed degree dis-
tributions, high clustering coefficients and community structure (Barabasi 2016; 2003).
Once constructed, the networks can be used for a wide variety of applications, for instance
portfolio selection (Pozzi et al. 2013; Peralta and Zareei 2016), stability analysis (Huang
et al. 2009) and to detect attempts to manipulate stock prices (Sun et al. 2011; Shi et al.
2019).

A common and popular way of constructing a financial network is to infer it from
returns data following the seminal work of Mantenga (1999). In this paper the author
uses Pearson’s correlation coefficient between the returns to weight the edge between two
companies and constructs a minimum spanning tree from the resulting graph, finding
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companies in similar sectors are clustered in the tree. Onella et al. (2003) further investi-
gate this, studying the effects of market crashes on the minimum spanning tree. They find
the length of the tree decreases in times of market disruption (i.e. things become more
correlated). Boginski et al. (2005) create a network from the correlation matrix inferred
from financial returns data and investigate what happens to the structure of the network
when a threshold is set. Any correlation coefficients with an absolute value below the
threshold are set to zero and any above are set to one. This model is applied to the US stock
market, and they find that the degree distribution of the networks resembles a power
law if the threshold is set to a sufficiently large value. Furthermore they also construct
maximal independent sets from the network in an attempt to create diversified portfo-
lios. Other authors have applied this model to the Russian (Nagurney 2003), Chinese
(Huang et al. 2009) and British (Chu and Nadarajah 2017) stock markets. These models
have also been applied to other assets, including cryptocurrencies (Song et al. 2019).

An important question is whether these correlation networks contain real informa-
tion or whether they are merely picking up noise present at that moment of time. Plerou
et al. (2002) use random matrix theory to analyze correlation matrices inferred from
stock returns. By studying the eigenvalues and eigenvectors of the correlation matrix they
obtain several interesting results. Firstly, only a few of the eigenvalues and eigenvectors
contained in the correlation matrix differ significantly from those obtained from a ran-
dom matrix. This implies many of the relationships in the correlation matrix are noise.
However the largest eigenvalue tends to differ significantly, being an order of magnitude
larger than the second largest. The eigenvector that corresponds to this eigenvalue tends
to contain information that affects all stocks (for instance interest rate increases), with
its components being significantly different from those obtained from a random matrix.
They also study the next few eigenvectors corresponding to the next largest eigenvalues
and find these tend to have significant values for related stocks - for instance those in the
same sector or who have business in similar regions. Finally they show the eigenvector
that corresponds to the largest eigenvalue tends to be preserved for correlation matrices
inferred from data across different times, indicating it is stable.

While using the correlation coefficient does give a simple, interpretable model there are
downsides. Two variables which share a common cause can be correlated, which could be
considered a false relationship. We can use partial correlation in this context to attempt
to remove these indirect correlations. Kennet et al. (2010) create a form of partial cor-
relation network they term a ‘dependency network’! Calculating partial correlations by
removing one variable at a time, they subtract this off the correlation coefficient between
two variables. This gives the contribution that a particular company has on the correla-
tion between two others. These networks are directed and help us to understand which
companies are influential in the market. They find that the financial sector is very influ-
ential in the US stock markets and its influence is maintained throughout the period of
study.

Another example of the use of partial correlation is used by Wang et al. (2018) who com-
pare minimum spanning trees constructed using the correlation and partial correlation
coefficients inferred from various stock indices across the world. They calculate partial
correlation by inverting the correlation matrix and find that the centrality structure in
the minimum spanning tree constructed from the partial correlation matrix is more use-
ful than that constructed from the correlation matrix, with the USA, Germany and Japan



Millington and Niranjan Applied Network Science (2020) 5:11 Page 3 of 19

clearly serving as hubs. Other authors have used sparse precision matrix estimators to
infer these networks, for instance the graphical lasso (Millington and Niranjan 2017; Per-
alta 2015) and SPACE (Millington and Niranjan 2019). These sparse methods do however
tend to produce quite unstable networks, possibly due to the instability of the lasso with
highly correlated data (Wainwright 2009; Preis et al. 2012).

A covariance matrix can be used to estimate both correlation and partial correlation
matrices. We can obtain the correlation matrix (C) from the covariance matrix (X) by
normalizing the off-diagonal entries:

R v

Obtaining the partial correlation matrix can be done in a similar manner. We scale the
off diagonal entries of the inverse of the covariance matrix (®), also called the precision
matrix, to acquire the partial correlation matrix (P)

Py= -l @

Calculating the partial correlation matrix therefore requires that the covariance matrix
is invertible. This is not always the case with financial data due to the presence of out-
liers and the issue of having more dimensions than samples. To solve these issues we use
the Ledoit-Wolf Covariance shrinkage method (Ledoit and Wolf 2004). This produces a
well-regularized covariance matrix by combining the sample covariance matrix with the
identity to reduce the off-diagonal values. This well formed covariance matrix can then be
inverted to obtain the precision matrix. With these regularized covariance and precision
matrices, we can use the equations above to obtain the correlation and partial correla-
tion networks. Once obtained, we can then compare and contrast said networks. The
shrinkage method is described further in “Ledoit-Wolf covariance” section.

We hope that by using partial correlation we can discover latent relationships that are
hidden in correlation networks by the overall movement of the market. Previous work
has focused on removing the market mode from the data by various methods, including
deleting the largest eigenvalue and eigenvector, or using a factor model (Namaki et al.
2011a) but to our knowledge a partial correlation approach like the one we take has not
been used on financial data before. In our approach, the partial correlation between two
variables is the correlation between the two once the linear effects of all other variables
have been removed. To gain further insight, first consider that we can infer row i of a
precision matrix from a dataset X via regressing variable i (x;) on the others (X_;)

B* = argmjn||9?i — Xfi,é”% )
B

The solution to this is

CF

O _p, |2 (4)
Oj; Oji

*
By=—ol =P
This means that the partial correlation between i and j (P;) is proportional to the weight
that the least squares method would assign to j in a regression problem if we tried to
predict i from the rest of the dataset (or since P; = Pj; the weight that the least squares
method would assign to i if we tried to predict j from the dataset)
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Furthermore the precision matrix is intimately connected with the minimum variance
portfolio. The problem, formulated as (Markowitz 1952)
minimize W’ Zw
Y (5)
subjectto 17w =1
has a solution of for one corner of the optimal mean-variance returns frontier
. 1 >
1701
where 1 is a vector of all 1s and w; is the amount to be invested in asset i. Due to the
relationship between the precision matrix (®) and partial correlation (P) (see Eq. 2) we
expect these networks will give insight into the benefits and drawbacks of these portfolios,
however it is important to remember a partial correlation matrix discards the diagonal of

the precision matrix

Ledoit-Wolf covariance

Ledoit-Wolf covariance is based upon shrinkage, where we combine the sample covari-
ance matrix S (which may have a high variance but low bias) with a known matrix with
desirable properties (which has a low variance but high bias). The usual choice for this is
the identity matrix I and we create a linear combination of the two

Zw = (1= p)S + ptr(S)] (7)
To decide p we wish to minimize the Frobenius norm of the difference between Xy, and
the true population covariance matrix X,

mpinE[lIE* — TwllF] ®

The optimal solution of p is
o EUS=SiE g
E[IS —tr(S)II[}] 82

The interpretation here is that if S is very close to X, (i.e. our estimate of the covariance

)

is good) then we do not need to shrink much, or if our shrinkage choice does not seem
accurate then we should not shrink much either. However the obvious flaw so far is that
we need to know the true population covariance matrix to obtain the correct value for p -
and if we did then we would not need to bother estimating it to begin with! We therefore
require estimates of 2 and §2. We can estimate 52 as following:

82 = |IS — tr(S)1|[2 (10)
and 82 as
AZ—iXHij % = SII? (1D
ve=o0 kX F
k=1
B2 = min(82, y2) (12)
Y)
p=t (13)
1)

The constraint on 82 ensures that p < 1. While it is rarely necessary, it does help stop us
accidentally making our estimate less well formed.

Page 4 of 19
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The Ledoit-Wolf method is guaranteed to give us a positive-definite invertible matrix,
which is critical in this application as we require the inverse of the covariance matrix (the
precision matrix) to acquire the partial correlation matrix.

This covariance estimation method has been applied to the genomics field
(Schifer and Strimmer 2005), for portfolio optimization (Ledoit and Wolf 2004) and in the
neuroscience field (Brier et al. 2015) but to our knowledge has not actually been applied

to create financial networks.

Data and software

For our study we use daily log returns from the S&P500. If there is less than 10% of the
data missing for a particular stock we fill it with the price from the previous day, or if the
data is missing from the start, from the first day when the stock is traded. If there is more
than 10% missing we discard the data for that stock. We use the close price on the day to
calculate the return, from 2000-01-03 to 2017-12-05. Overall we have 4510 days of return
data for 345 stocks. Since financial data is non stationary we use a window of 300 days
and slide along this 30 days at a time to obtain a sample where we can assume the data is
stationary, giving us 140 windows overall. The returns inside each window are normalized
using the z-score to have a mean of 0 and a standard deviation of 1. While correlation is by
definition normalized, this procedure is mostly for the benefit of the shrinkage procedure
- normalizing reduces the amount of shrinkage required which allows us to capture more
relationships.

Using this dataset we infer a network for each window by using the Ledoit-Wolf shrink-
age methods to obtain a covariance matrix and inverting it to obtain a precision matrix.
We then scale both of these matrices appropriately using Eqs. 1 (Correlation) and 2 (Par-
tial Correlation) to create the correlation and partial correlation matrices and use these
as adjacency matrices to construct the networks. We then study the properties of these
networks and how they change over time.

We make use of Python, NumPy and SciPy (Oliphant 2006) for general scripting, pandas
(McKinney 2010) for handing the data, sklearn (Pedregosa et al. 2011) for the imple-
mentation of the Ledoit Wolf estimation methods, statsmodels (Seabold and Perktold
2010) for some of the statistical analysis, matplotlib (Hunter 2007) for plotting, Networkx
(Hagberg et al. 2008) for the network analysis and gephi (Bastian et al. 2009) for some
graph visualization.

Results and analysis

Network analysis and sector centrality

Firstly we display the networks constructed on the first window of this data. Since
they are dense, we display the edges that correspond to the 1000 largest absolute val-
ues from the off-diagonal of the matrix. The correlation network has isolated nodes
in this situation, so we only display the largest connected component, but the par-
tial correlation network remains connected. These networks are displayed in Figs. 1
(Correlation) and 2 (Partial Correlation). Both networks show a degree of sector clus-
tering but it is far more prominent in the correlation networks compared to the
partial correlation networks. The partial correlation networks also seem to have a
more uniform degree distribution than the correlation ones, with less community

structure.
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Fig. 1 Example correlation network inferred from the first window. Only the largest connected component
of the network containing the 1000 edges with the largest absolute weights are shown. Nodes are coloured
according to sector membership. There is a strong community structure visible, with communities usually
made up of companies in the same sector

To begin our analysis we look at the distribution of correlation coefficients to partial
correlation coefficients in the network, and the difference in weight between the same
edge in the two networks. A histogram of these is shown in Fig. 3, and a scatter plot
relating the two is shown in Fig. 4. In general, partial correlation coefficients tend to be
smaller than the corresponding correlation values and are more likely to be negative, but
it is also clear that the two are related. This is likely to be due to the definition of partial
correlation - if it is reducing the value of indirect correlations then we would expect some
companies that are supposedly correlated to have these relationship strengths reduced.

Our next goal is to compare and contrast stability of the networks. In a correlation
matrix the largest eigenvalue measures the intensity of the correlation present, and the
corresponding eigenvector measures the ‘market mode’ and the effect the general market
has on that particular company (Plerou et al. 2002; Namaki et al. 2011b). Each entry of this
eigenvector can also be used as a measure of centrality. Therefore we can study how this
eigenvector changes over time to see if the networks regard the same nodes as important,
a proxy for how stable the networks are. To measure this we normalize the eigenvectors so
the components to add to 1 and then measure the difference between those from adjacent
windows using the Ly norm.

Firstly we look at how the largest eigenvalue varies over time. The results are shown in
Fig. 5. From this we can see that the largest eigenvalue of the partial correlation matrix is
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Fig. 2 Example partial correlation network inferred from the first window. Only the 1000 edges with the
largest absolute weights are shown. Nodes are coloured according to sector membership. There seems to be
less sector clustering in the partial correlation networks and less of a community structure
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Fig. 3 Distribution of correlation and partial correlation coefficients over the dataset of 140 windows taken
over the 17 year period. We can see that the partial correlation matrix generally has smaller values than the
correlation matrix, and that they are more likely to be negative. a Correlation b Partial Correlation
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Fig. 4 Scatter plot of the correlation coefficient for an edge against that of the partial correlation coefficient
for each of the 140 networks in the dataset. The partial correlation coefficients are in general smaller than
their corresponding correlation coefficients which is to be expected if the indirect correlations and reduced,
however there is still a relationship between the two

much smaller and varies relatively little, compared to the largest eigenvalue of the corre-
lation matrix. This implies that the intensity of the partial correlation networks does not
change much over the dataset, particularly compared to the correlation networks which
have large changes. This perhaps indicates that the market mode has been removed. How-
ever if we look at the difference in the eigenvectors we get a slightly different story. From
Fig. 6 we can see there is a larger change in the corresponding leading eigenvector of the
partial correlation matrix as opposed to the correlation matrix, signifying the partial cor-
relation networks are less stable than the corresponding correlation networks and could
indicate as to why minimum risk portfolios tend to require large changes in asset holdings
(DeMiguel et al. 2007). Both seem to reflect macroeconomic changes, with the magnitude

Largest Eigenvalue Largest Eigenvalue
2.000
180
160 o 1.998 4
140
1.996 4
120 1
100 4 1.994 4
80
1.992
60
40 1 1.990 4
o g e e et e A ge® e e et e
(a) (b)
Fig. 5 Largest eigenvalue in the correlation (left) and partial correlation (right) networks. There is a large
variation in the largest eigenvalue of the correlation matrix, with it varying from 180 to 40. It noticeably picks
up the financial crisis of 2008/2009, where the eigenvalue reaches its maximum. The reverse is true in the
partial correlation networks where the largest eigenvalue stays roughly constant (and quite small) showing
the network has a consistent intensity, indicating the market state has been removed. a Correlation b Partial
Correlation
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Fig. 6 Change in the normalized leading eigenvectors, measured using the L, norm, of the correlation and
partial correlation matrices. Both have changes that seem to reflect the general market conditions, although
the eigenvector from the partial correlation matrix seems to change more, which shows the network is less
stable

of the difference varying over time. Interestingly the differences between eigenvectors
from adjacent windows drops during periods of disruption.

Next we study the centrality of the sectors in the networks, allowing us to quantify
their influence in the economy. We use two measures, degree centrality and eigenvector
centrality. Relating these specifically to financial networks, firstly we note that degree
centrality is simply the sum of the edges of a node. The weight on the optimal portfolio
is also proportional to weight of the edges on a node (see Eq. 6). Secondly eigenvector
centrality is calculated using the eigenvector that corresponds to the largest eigenvalue,
with its components normalized to sum to 1 in the same manner as above. This largest
eigenvector reflects the market mode and the effect the general market has on a particular
company.

The presence of negative edges in the networks makes calculating centrality more chal-
lenging. Negative edges can result in a node having negative centrality, which does not
have an obvious interpretation. We can use the absolute values of the edges to solve this
problem but this involves discarding the negative relationships, which are numerous in
the partial correlation networks. In our experiments we found relatively little difference
between permitting negative edges or using the absolute values of edge weights and so
permit the existence of negative edges. We normalize at the end so the sum of all node
centralities is 1.

To measure the centrality of a sector we take the mean centrality of all the companies
in said sector. We then normalize these mean sector centralities to add to 1 to make com-
parison easier. To start with we look at the mean degree centrality for the sectors for each
network. A graph of this over time is shown in Fig. 7, with the legend shown in Fig. 8.
In this graph we can see that the partial correlation networks have a much lower differ-
ence and variance in the sector centrality than the correlation networks - each sector has
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Fig. 7 Mean degree centrality for each sector over time. It is noticeable that in the partial correlation
networks the difference in centrality is much smaller for each sector than in the correlation networks. We can
see the macroeconomic trends in the correlation networks with the centralities jumping together during the
crash. The colour legend can be found in Fig. 8. a Correlation b Partial Correlation

roughly the same centrality and there is little variation over time. The telecommunica-
tions sector has relatively few companies, hence why its centrality has far more variance.
In the correlation networks we firstly see a much larger variance in the mean centrality of
a sector, with the financial sector having the highest mean centrality for the majority of the
dataset. Interestingly all the centralities ‘jump’ together during the financial crisis, show-
ing how suddenly the correlations between previously unrelated companies increases due
to these macroeconomic effects.

Next we look at eigenvector centrality. A graph of this over time is shown in Fig. 9, with
the legend in Fig. 8. In this figure we see very different results to degree centrality for the
partial correlation networks, which show a much larger variation in the centrality of the

sectors. They also show a slightly larger variance in the mean centrality when compared
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Fig. 8 Legend for the sector colours for Figs. 7 and 9

with the correlation networks too. In particular the financial sector is far more dominant
than we would expect. The macroeconomic conditions are also visible in these graphs,
with the financial crisis again forcing the mean centralities towards a mean.

The movement of centrality measures towards a mean during times of disruption is
particularly interesting. Preis et al. (2012) pointed out that the market tends to be more
correlation during times of market disruption, which makes selecting truly diversified
portfolios very challenging as suddenly supposedly unrelated assets become related dur-
ing these periods. This may be relevant here too - here we have that during periods of
disruption companies start having far more similar behaviour than they did during times
of stability.

We have pointed out this connection between the minimum risk portfolios and the
degree centrality in the partial correlation networks, but to what degree does it hold? To
further explore this we plot the L, difference between the optimal portfolio vector and
the sum of the diagonal of the precision matrix (as this is effectively discarded by the
partial correlation matrix) in Fig. 10. From this we can see the difference can be quite
large, although most of the difference seems to be explained by the size of the precision
matrix diagonal, which is effectively discarded by the partial correlation networks.

Out of sample portfolio performance

Previous work with correlation networks has stated that companies who are on the fringes
of the network have a better Sharpe ratio than those who are more central (Peralta and
Zareei 2016; Pozzi et al. 2013). We are curious as to how this applies in these networks.
Therefore we study the centrality of a company against its out of sample Sharpe ratio
(defined as the mean return over the standard deviation of the returns g) and its risk
(defined as the standard deviation of the returns) for the next window.

Using Spearman correlation we find that there is mild positive correlation between the
centrality of a company and its out of sample Sharpe ratio in every network, and perhaps
unsurprisingly mild negative correlation between out of sample risk and centrality. The
exact results are shown in Table 1. All results are statistically significant at p < 0.05.
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Fig. 9 Mean eigenvector centrality for each sector over time. These centralities have a much larger variance
than the degree centralities, particularly for the partial correlation networks. Here we can see the financial
sector is the most central for the majority of the dataset, although the real estate does also become
important in both networks. Macroeconomic effects are also much more visible, with the strong change
from 2009 - 2011 as all the sector centralities move together. The colour legend can be found in Fig. 7.

a Correlation b Partial Correlation

o

S °

Community detection
In Figs. 1 and 2 it can be seen that there is some community structure in the networks,
so we are interested in further studying this. To do so we use a community detection
algorithm to divide each network into communities, and analyze how these change over
time. Since we have a ground truth classification of the sector memberships of the various
companies, we can also quantify how well these communities reflect the sector structure.
A popular method to detect communities is to attempt to maximize the modularity
of the network. This is a hard problem (Brandes et al. 2006) and so various approxi-
mate methods have been proposed, including a spectral method (Newman 2006) or the
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Fig. 10 L, difference between the weight placed on each node in the optimal portfolio vs degree centrality
of each node (left) and the sum of the precision matrix diagonal (right). The differences between the optimal
portfolio and the degree centrality can be quite large, but most of the difference can be explained by the sum
of the precision matrix diagonal. a Optimal Portfolio vs Degree Centrality b Sum of precision matrix diagonal

Louvain algorithm (Blondel et al. 2008). These methods have been applied previously to
detect communities in financial networks constructed from stock data (PICCARDI et al.
2011; Isogai 2014).

The classic formulation of modularity for a network with adjacency matrix A and a
vector of community assignments ¢ is (Newman 2006)

1 kik;
Q=—3> > (A,; - m’) 8(circj) (14)
i

where m = ), Zinj’ 8(ci, ¢j) is the Dirac function, equaling 1 when ¢; = ¢; (i.e. nodes
i and j are in the same community and O otherwise) and k; is the sum of weights of
a node. However this is not appropriate when we are looking at graphs with negative
edges. Here we use a definition designed for the presence of negative edges. Proposed by
Gomez et al. (2009) we divide the network into positive edges (signified by a +) and
negative edges (signified by a —)

Aij = ;]r —Ai; (15)
where

Ay = max(0,Ay) (16)

AL; = max(O, _Ai/) (17)

Table 1 Spearman correlation between the centrality measures and the out of sample risk and
Sharpe ratio

Sharpe Ratio Degree Eigenvector
Correlation 0.156 0.148
Partial Correlation 0.129 0.131

Risk
Correlation -0.189 -0.175
Partial Correlation -0.145 -0.156

In all situations there is a positive relationship between centrality and Sharpe ratio, and a negative relationship between centrality
and out of sample risk. All relationships are statistically significant at p < 0.05 but the correlation is relatively mild
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and so the definitions of modularity are

1 k;rk;r
Q =—-3 > (4 - )i (18)
i
1 k; k-~
C=—>> (A, - ) 8(cir cj) (19)
i

where

mt=3" ZA;]T (20)
i

m- = Z ZA; (1)
i

Kh=YAf (22)

j
k=Y A; (23)

j

Total modularity is then a scaled version of these
+ —_
m " m _

_ _ 24
Q= Q" T (24)

We choose the Louvain method (Blondel et al. 2008) to maximize modularity. This
method works by maximizing modularity in a greedy bottom up manner. All nodes are
initialized into their own random community. We then check the gain in modularity from
moving node i from community a to community b. Doing so for all communities, we
put node i in the community that maximizes the modularity gain the most, assuming the
gain is positive. We then continue to do this over all nodes until we cannot put a node in
another community and make a positive gain in modularity. Phase 1 of the algorithm is
now complete. In phase 2 each community can then be treated as a node and the edges out
to other communities collapsed into one edge per community. The algorithm can then be
run again until we do not make a gain in modularity by collapsing the communities.

The gain in modularity from moving isolated node i into a community can be calculated
by separately considering the positive and negative edges as follows

ot + o\ 2 + +\? +\?
s = Stk _(m%) ) _(Z> _(’9 ) (5)

mt mt mt mt m*
_ — — —\ 2 - - 2 T 2

5Q_ — Zin +_2ki _ (Ztot j_ki ) _ Zigl _ (z:t:)t> — (kl_> (26)
m m m m m

where ), is the sum of weights of all the edges inside the community node i is being
moved into, D, is the sum of weights of the edges to the community. The gains are
then scaled by the total weight of positive and negative edges in the graph and combined
together

m
sQt —
Q mt +m~

A notable advantage of this algorithm is that we do not need to choose the number of

m

Q= 8Q~ (27)

mt +m~

communities. Since this algorithm is greedy, we randomise the order of the nodes each
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run through in phase 1. This of course means that we will achieve different results every
time we run the algorithm. Therefore we run the algorithm 10 times on each network to
get a mean and standard deviation for any measures taken.

To evaluate our clustering we use the Adjusted Rand Index. Given a set of elements S,
and two partitions of this X and Y divided into subsets the Rand Index (Rand 1971) is
defined as

a+b
T atbtctd
where a is the number of pairs of items in the same subset in X and Y, b is the number of

(28)

pairs of items that are in different subsets in X and Y, c is the number of pairs of items in
the same subset in X and a different subset in Y and d in the number of pairs of items in
the same subset in Y and different subsets in X. Basically it is very similar to a measure of
accuracy if we have a ground truth labelling.

In the Adjusted Rand Index (ARI) a correction is made for chance, using the expected
similarity for clustering under a random model:

Arf= _ RERL (29)
max(R) — E[R]

Figure 11 shows the ARI over time, exhibiting how the networks reflect the known sec-
tor structure. The partial correlation networks have less success overall in discovering
the sector structure, although both networks show large variations over the time period.
We suggest this is to due to the reduction in indirect correlations that the partial cor-
relation coefficient provides - we would expect this to reduce intra-sector correlation
strengths which would lead to a reduced success in recovering the sector structure. It is
also noticeable that times of disruption seem to lower the ARI for the correlation net-
works. This could be due to the increased amount of correlation and volatility causing

companies to behave more similarly, reducing the ability of the algorithm to separate them

Rand Score
—— Correlation
0.40 - —— Partial Correlation
0.35
0.30 4
0.25 4 ll
i
0.20 N Ll l"
0.15 A n
0.10 e
0.05 -
yL O © N O 1 & ©
S S IS S U Sl
Fig. 11 Adjusted Rand Index score over time using Louvain community detection algorithm. In general the
partial correlation networks have less success in uncovering the sector structure than the correlation
networks although there are time periods where this is not the case. This could be due to the reduction in
supposedly indirect correlations by the partial correlation networks
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(Preis et al. 2012). However for the partial correlation networks the ARI actually increases
during these times.

We next look at the number of clusters produced. This is shown in Fig. 12. The corre-
lation networks have a smaller number of clusters than the partial correlation networks,
averaging around 4 while the partial correlation networks have an average of around 20.
Both choose roughly the same number of clusters throughout the entire dataset, although
we can see there is a small dip for both networks in 2009. Again this could be due to the
increasing correlations during market disruption, making the companies seem more sim-
ilar. There are 11 actual sectors in the dataset, so neither method is particularly close to
the true value.

Finally we study how stable the clusters are over time. Since we have 10 partitions per
network, we use the adjusted rand index to compare the consistency of the clustering
between those from the previous window and those from the next. The results of this are
shown in Fig. 13. The correlation networks have a much more stable structure than the
partial correlation networks (i.e the ARI between each run is larger meaning more compa-
nies are in the same cluster), although the variance does seem to be higher. For the corre-
lation networks there is a large ’break’ in 2008 with the consistency dropping considerably,
but then both networks have an increase in stable clustering over the crisis. This is consis-
tent with our finding about network stability in “Network analysis and sector centrality”
section, with the partial correlation networks being less stable than the correlation
networks.

Conclusion and future work
In this paper we have constructed correlation and partial correlation networks from
S&P500 returns data using the Ledoit-Wolf covariance estimator. This is designed to

Mean Number of Clusters
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15 - !
—— Correlation
—— Partial Correlation
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I T A
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Y o
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Fig. 12 Number of clusters over time using Louvain community detection algorithm. The correlation
networks generally seem to pick up a smaller number of clusters than the partial correlation networks, but
both keep a similar number over the entire dataset. There is also a drop in the number of clusters detected
for both networks during the financial crisis
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Fig. 13 Clustering Consistency for the Louvain algorithm over time. The correlation network produces much
more stable clusters than the partial correlation networks, although there is much more variance in this
consistency than in the partial correlation networks

cope having more dimensions than samples and always gives us an invertible covariance
matrix, which is required for estimation of the partial correlation matrix. We construct
140 networks using windows of data and contrast the correlation and partial correlation
networks produced.

Firstly we compare the edge weights in these networks. The partial correlation network
has more negative edges than the correlation network and generally has smaller weights.
There is however a clear relationship between the two - several edges with a high corre-
lation also have a high partial correlation. Since partial correlation is designed to reduce
the effect of indirect correlations this is something we would expect.

Secondly we use the largest eigenvalue and corresponding eigenvector to measure the
intensity and stability of the networks. The largest eigenvalue of the correlation network
varies significantly depending on the state of the market at that time while the largest
eigenvalue of the partial correlation network remains roughly constant. This shows that
the partial correlation networks do not have much change in intensity over the dataset.
However, using the difference in the largest eigenvector to measure the stability of the
network we find the partial correlation networks are significantly less stable than the
correlation networks, perhaps showing why minimum risk portfolios tend to be less
stable.

Exploring the mean centrality of various sectors using both degree and eigenvector cen-
trality, we find that in the partial correlation networks the sectors all have relatively similar
mean centrality with degree centrality. Furthermore macroeconomic factors do not seem
to effect the centrality, with all sectors have a fairly consistent mean degree centrality. This
is not the case in the correlation networks, where there is clear variation in the central-
ities, notably during the financial crisis of 2008/2009. The eigenvector centralities show

a very different story, with there being more variation in the partial correlation networks
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rather than less. Macroeconomic effects are also picked up in both networks here, again
with the centralities of the sectors moving together during the financial crisis.

Utilizing these networks for portfolio selection, we find there is positive correlation
between the centrality of a company and its out of sample Sharpe ratio but there is nega-
tive correlation between its centrality and risk. This result is statistically significant and is
relevant for both the correlation and partial correlation networks.

Finally we run an altered Louvain community detection algorithm using a version of
modularity that is designed for networks with negative edges to attempt to discover
whether the sector assignments are replicated in the actual data. We find that the par-
tial correlation networks are less successful than the correlation networks in uncovering
these sector clusters. The correlation networks also produce more stable clustering with a
lower number of clusters than the partial correlation networks. This indicates that in gen-
eral the partial correlation networks have less stable structure than a correlation network
constructed from the same data.
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