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Abstract

The construction of minimum spanning trees (MSTs) from correlation ma-
trices is an often used method to study relationships in the financial markets.
However most of the work on this topic tends to use the Pearson correlation
coefficient, which relies on the assumption of normality and can be brittle to
the presence of outliers, neither of which is ideal for the study of financial
returns. In this paper we study the inference of MSTs from daily US finan-
cial returns using Pearson and two rank correlation methods, Spearman and
Kendall’s 7. We find that the trees constructed using these rank methods
tend to be more stable and maintain more edges over the dataset than those
constructed using Pearson correlation, that there are significant differences
in the agreement of the centrality of various sectors and that despite these,
the trees tend to have similar topologies.
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1. Introduction

Investors tend to not invest purely in single asset, but due to a desire to
reduce risk and increase diversification, own portfolios made up of multiple
assets. To accurately assess risk in these portfolios we must understand the
dynamics of the relationships between said assets. Various methods of infer-
ring the strength of relationships exist, for instance correlation [I] [2], partial
correlation [3] [4] [5] or mutual information [6] [7], but Pearson correlation
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is the most ubiquitous. From these asset to asset relationships we can use
network theory to study the system as a whole.

Accurate inference of these correlation matrices from a dataset with p
assets and n samples is challenging for numerous reasons. If n is not signifi-
cantly larger than p, the correlation matrix will contain significant amounts
of noise. Due to non-stationarities in the markets, we often want a small win-
dow of data, where we can assume that the data is stationary [8]. This often
results in n being close to p, even if we have a large amount of data. Options
to help remove noise in this situation include topological filtration methods
(e.g. Minimum Spanning Trees [1], Planar Maximally Filtered Graphs [9]),
random matrix theory approaches [10] [I1] [12] or thresholding [13] [2]. In
this paper we focus on the use of topological methods for this purpose, due
to the simplicity of construction and interpretation. To start with, we fol-
low Mantegna [I] and construct a distance matrix (D) from the correlation
matrix (C):

Dij = /2(1 = Cy) (1)

This distance matrix is then used as the adjacency matrix for a new graph,
the distance graph. From this we can use Kruskal’s algorithm to create a
minimum spanning tree (MST), which proceeds as follows

e Initialise the tree as a disconnected graph made up of the nodes in the
distance graph

e Sort edges of the distance graph in ascending order and place in a list
e For each edge between ¢ and j in this sorted list

— If 7 and j are not in the same component in the tree, add this edge
into the tree

Various ’stylised facts’ are known about these trees, for instance
e Branches of the trees tend to contain companies in the same sector [1]

e The trees shrink and have different structures during times of market
stress compared to market calm [14] [15]

e The trees tend to have a ’scale free’ structure, with nodes of high degree

(hubs) occurring more than would be expected from a random graph
[16] [17] [14]



e Assets with large weights in Markowitz portfolios tend to be peripheral
[18] [19] [20], however there is disagreement over whether to chose assets
on the peripheries or center of the networks for better Sharpe ratios [21]
[22] [20]

e The MSTs tend to only keep significant correlations [23]

While most of the focus has been on the US markets, MST based models
have been applied to markets from other countries (e.g. Japan [24], the UK
[25], Italy [26] and South Korea [27]), to cryptocurrencies [28] [29] and to
networks from neuroscience [30] [31].

While the interpretability of the Pearson correlation coefficient is a big
plus, it assumes normality, something which most assets return distributions
do not follow [32], and is sensitive to outliers. There are of course correla-
tion measures that do not suffer from these issues, namely those based on
rank. Rank correlation methods calculate the correlation between the ranks
of variables, which tends to remove the effects of outliers while still giving a
measure of the degree to which two variables increase or decrease together.
However to the best of our knowledge, most of the literature which studies
the correlations between asset returns tends to use the Pearson correlation
coefficient. Therefore in this paper we compare networks inferred from stock
returns using Pearson, Spearman and Kendall’s 7 correlation in order to see
if the robustness of these rank correlations can improve our understanding
of the stock markets. Previous work [33] has briefly mentioned that MSTs
constructed using Spearman correlation from volatility measures of stocks
are more robust, but they did not explicitly compare the two correlation
coefficients. In a paper more broadly looking at the effects of weighting
observations, Pozzi et al. [34] compare Pearson correlation and Kendall’s
7. They find that matrices constructed using Kendall’s 7 tend to contain
more information than those constructed using Pearson correlation, and are
affected less when they weight observations.

A paper on a more similar theme to this is written by Musmeci et al.
[35], who take a multilayer network approach. Fach layer is composed of
a Planar Maximally Filtered Graph, constructed using a different method.
Four methods are used to quantify relationships between assets, Pearson
correlation, Kendall’s 7, tail dependence and partial correlation. They find
that these layers tend to have significant differences, with between 30% and
70% of the edges being unique to each layer. Pearson and Kendall’s 7 tend
to be the methods that agree the most, with a correlation of around 0.7



on the degree of nodes. Interestingly they find that the level of agreement
drops during times of crisis, showing that these different methods tend to
pick up different signals from the markets and indicating that being mindful
of multiple methods of quantifying relationships is valuable when taking a
network approach to financial returns.

The final example we found is by Shirokikh et al. [36] who use a thresh-
olding model with Spearman correlation, but they do not compare how this
model differs to a Pearson based one.

The Pearson correlation between two variables 7; and r; is defined as

follows
0 () = )5 = 1) 2
L VL) = () = )

To calculate the Spearman correlation, we firstly sort the values, re-
place each value with its rank, and calculate the Pearson correlation be-
tween the ranks. This then measures the degree to which two variables
monotonically increase or decrease together. Kendall’s 7 is slightly more
complicated, measuring the relationship by considering the number of con-
cordant pairs vs the number of discordant pairs. A pair of observations
(ri(t),r;(t)), (r;(t +1),r;(t + 1)) is concordant if 7;(t) > r;(¢) and r;(t +1) >
rj(t 4+ 1) or if ri(t) < r;(t) and r;(t + 1) < r;(t +1). It is discordant if
ri(t) > r;(t) and ri(t+1) < r;j(t+1) orif r;(t) < r;(t) and r;(t+1) > r;(t+1).
The 7-a formula simply counts the number of concordant pairs vs the num-
ber of discordant pairs, divided by the total number of pairs. This does not
however take into account any ties that might occur in the data, so we use
the 7-b formulation, defined as

S Ne — Ng ( 3)

\/(no —n1)(no — nz)
where n.. is the number of concordant pairs, ng is the number of discordant
pairs, ng = ”(nz_l), ny = Y. to(ta — 1)/2, ng = > ug(u, — 1)/2, t, is the
number of values in the ath group of ties for variable i, u, is the number of
values in the ath group of ties for variable j. Any reference to 7 in the rest

of the paper refers to this 7-b formation.

2. Data and Software

The data we use is downloaded from Yahoo Finance. We use log returns
from the S&P500 from 2000/03/01 to 2019/10/21. Any company missing
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more than 10% of its data is removed, and any missing values are filled
forwards from the first good value. If the values are missing from the start
we backfill from the first good value. This results in 4790 days of return
data for 229 companies. From this data we take a window of 504 days and
slide along 30 days at a time, creating 142 windows to infer correlations
from. Each company is tagged with a sector from the GICS classification
using information from Bloomberg. This places each company into 1 of
11 sectors, Information Technology, Real Estate, Materials, Communication
Services, Energy, Financials, Utilities, Industrials, Consumer Discretionary,
Healthcare or Consumer Staples.

We make use of Python, NumPy and SciPy [37] for general scripting,
pandas [38] for handing the data, statsmodels [39] for some of the statistical
analysis, matplotlib [40] for plotting, arch [4I] for the implementation of
the circular bootstrap, Networkx [42] for the network analysis and gephi
[43] for the MST visualization. The code and data is available at https:
//github.com/shazzzm/rank_correlation_msts.

3. Results and Analysis

3.1. Correlation Matriz Analysis

Firstly we analyze the full correlation matrices with no filtration. A
starting point is to look at the correlation coefficient for the same set of values.
Figure (1| shows a set of scatter plots comparing the correlations. From this
we can see there is a degree of agreement between all, and generally larger
correlations are more likely to be similar. However there is a 'fat’ middle when
comparing the rank correlations to the Pearson correlation, where there can
be significant disagreement. Spearman and 7 seem to be very similar, with
there being a strong relationship between the two.

The largest eigenvalue of the correlation matrix is a measure of the inten-
sity of the correlation present in the matrix, and in matrices inferred from
financial returns tends to be significantly larger than the second largest [11]
[12]. Generally this largest eigenvalue is larger during times of stress and
smaller during times of calm [44] [11]. Firstly we study how this varies over
time for each correlation measure. This is shown in Figure [2] For all of the
networks there is a similar shape, with it peaking during times of market
stress and dropping during times of calm. The Spearman and Pearson cor-
relations have relatively similar values, although the Spearman has a smaller
range. The 7 correlation is much smaller than the other two at all times,
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Figure 1: Relationship of the correlation coefficients from the entire dataset. There is ob-
viously a degree of agreement, but the ’fat’ middle is notable when comparing the Pearson
and rank correlations, with it being possible to have a relatively large and significantly
correlation by one coefficient, and a smaller and less significant correlation in the other
measure. The rank correlations themselves are relatively similar.

and also has a smaller range. Times of stress and volatility tend to bring
more outliers in returns data, which could be the cause of the difference in
largest eigenvalue, but it is interesting that the eigenvalue for 7 correlation
is so much smaller at all times.

3.2. MST Stability

From these inferred correlation matrices we transform them into distance
matrices using and construct minimum spanning trees using Kruskal’s
algorithm. In this section we analyze and compare the stability of the trees
constructed using the various coefficients. Example MSTs from the first
window of data are shown in Figure [3] In all there is clear sector clustering,
with branches of the trees consisting of nodes from the same sector. This has
been noted before [1].

Firstly we focus on measuring the fraction of edge changes between MST's
adjacent in time, which quantifies how stable the trees are, and how well
change in the market is detected. The results are plotted in Figure 4} Here
we can see a large difference, with the MSTs inferred using the rank corre-
lations showing more stability over time than those inferred using Pearson
correlation. This is particularly noticeable during 2009, where the markets
were very volatile due to the financial crisis. Around 50% of the edges change
for the Pearson MSTSs, but only 30% change for the Spearman MSTSs, and
25% for the 7 MSTs. It is also interesting to note that the edge difference
rises at the start of the crisis and then drops during the actual crisis itself
for the Pearson and Spearman MSTs, and just drops for the 7 MSTs. Other
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Figure 2: Largest eigenvalue (Apax) in the networks over time. From this we can see the
Spearman correlation has a slightly smaller largest eigenvalue than the Pearson correlation,
while the 7 correlation is much smaller. The rank methods also have a smaller range than
the Pearson correlation. The volatility of the markets at times of stress is likely to lead
to more outliers, so the robustness of the rank correlations to these could be causing the
reduced variance of the largest eigenvalue.

authors have noted that by some measures the markets could be considered
more stable during these times [44] [45], but we have not found that this has
been mentioned in the context of MSTs.

This therefore shows that the Spearman and 7 MSTs tend to be more
consistent than Pearson MSTs. This is particularly prominent at the start of
the financial crisis, with the Pearson MST's showing a large spike in difference,
while the Spearman and 7 MSTs show little or no change in difference. In
this particular situation we would expect the heavy tails to affect the Pearson
correlation between two assets more than the rank methods, and this should
change the edges selected by the MST construction procedure.

Next we measure how the MSTs have changed from the first inferred tree
using the fraction of edges that differ from the first tree to the current tree.
This measures the life of an edge and shows us how the tree evolves. A
plot of this is shown in Figure f] From this we can see that quite rapidly
the trees differ from the original, with 70% of the edges changing within
2 years. For our experiments, what is particularly interesting is that the
rank MSTs maintain slightly more edges than the Pearson MSTs, but the
difference between the 7 and Spearman MSTs is very small.

Over the entire dataset, the Pearson MSTs maintain 4 edges, the Spear-
man MSTs maintain 7 edges and the 7 MSTs maintain 8 edges. For the
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Figure 3: Example MSTs constructed from the various correlation coefficients. Nodes are
coloured according to their sector membership. From this colouring we can see that all
coefficients show a strong degree of sector clustering, with branches of the trees tending to
contain companies in the same sector, and the presence of several important hub nodes.
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Figure 4: Edge difference between adjacent MSTs. From this we can see the MSTs inferred
using rank correlation are far more stable with regards to time than those inferred using
Pearson correlation. While all of the trees seem to become more similar during the financial
crisis, the Pearson MSTs show a big reconfiguration as the crisis starts, while the 7 MSTs
shows no spike before dropping.
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Figure 5: Fraction of edges that differ in the tree inferred at that moment in time from the
first tree inferred. This gives us a measure of how long the edges persist for. Most of the
edges disappear very rapidly, with around 70% changing within 2 years. The rank MSTs
seem to be slightly more stable than the Pearson MSTs, maintaining more edges from the
initial tree, but the difference between Spearman and Kendall’s 7 methods is very small.



Pearson MSTs these edges are

o T - VZ (Communication Services - Communication Services)

CCL - RCL (Consumer Discretionary - Consumer Discretionary)
e DHI - LEN (Consumer Discretionary - Consumer Discretionary)
e HD - LOW (Consumer Discretionary - Consumer Discretionary)
In addition to these, the Spearman MSTs also maintain
e CAT - DE (Industrials - Industrials)
e DX - UPS (Industrials - Industrials)
e GS - MS (Financials - Financials)
The 7 MSTs maintain all the edges mentioned so far, plus
e HAL - SLB (Energy - Energy)

It is notable these are all intrasector edges, and that there is a large over-
lap between all the trees - all of the edges maintained by the Pearson MST's
are maintained by the Spearman MSTs, and all of the edges maintained for
the Spearman MSTs are maintained for the 7 MSTs.

There is of course the question of how the difference between the MSTs
changes over time. We measure the fraction of edges that differ between the
three MSTs and plot it in Figure[6] From this we can see there is a significant
difference in the presence of edges between the rank MSTs and the Pearson
MSTs. The difference does seem to increase during the financial crisis, with
peaks occurring during 2008 and 2009. There seems to be relatively little
difference between the two rank MSTs, with less than 10% of the edges
being different for most of the dataset. This difference between the rank
methods does not seem to be particularly affected by market conditions.

With this knowledge that the MSTs select quite different edges, we next
ask which edges are selected differently. To start with we focus on the agree-
ment between the degree of the nodes (the number of edges each node has).
If we plot the Spearman correlation between the node degrees (Figure we
can see that there is relatively high agreement between node degrees, aside
from during 2011. This implies that nodes tend to be regarded as similarly
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Figure 6: Fraction of the edges that differ between the various MSTs. There is a large
degree of disagreement between the Pearson and rank-based correlations, even at the
smallest difference around 30% of the edges differ. The difference peaks during the financial
crisis, where over 50% of the edges differ at one point between the Pearson and rank MSTs.
The difference between the rank MSTs themselves is small, with less than 10% of the edges
differing.

important. However this does not show if this is in the core of the network
or the peripheries. To measure this we set a threshold to remove high degree
nodes (hubs), in this case arbitrarily defined as degree values over 4, and plot
the correlation in Figure [Tl We can see that the correlation drops signifi-
cantly between the Pearson MSTs and the rank MSTs, indicating that it is
the hub nodes that are the greatest source of agreement. If this threshold is
reversed, and the low degree nodes removed, the correlation is maintained at
around 0.7.

3.3. Node and Sector Centrality

Now we look at the centrality of the nodes and economic sectors in the
trees. If we sum the degree of each node for each MST we can get a measure
of degree over the entire dataset, showing us which nodes are regarded as
important overall. We refer to this as the total degree. The Spearman
correlation between the total degrees is high (Pearson/Spearman = 0.94,
Pearson/7 = 0.94, Spearman/7 = 0.99) indicating that the MSTs generally
agree on the total centrality of most nodes. The 10 nodes that have the
largest total degree shown in Table [I. We can see there is a significant
overlap between the trees, with 5/10 shared between all, and 9/10 shared
between the rank MSTs.
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Pearson
Company Sector Degree Sum

ITW Industrials 986

PPG Materials 980

PH Industrials 741

HON Industrials 716

ETN Industrials 712

BLK Financials 647

SPG Real Estate 638

TROW | Financials 629

JPM Financials 625

UTX Industrials 611

Spearman
Company Sector Degree Sum
PPG Materials 999
PH Industrials 862
MMM Industrials 721
ITW Industrials 677
ETN Industrials 674
TROW Financials 658
CAT Industrials 642
BEN Financials 604
AVB Real FEstate 588
JWN Consumer Discretionary 562
T
Company Sector Degree Sum

PPG Materials 970

PH Industrials 874

MMM Industrials 726

TROW | Financials 700

ITw Industrials 691

ETN Industrials 661

CAT Industrials 621

BEN Financials 583

LNC Financials 579

AVB Real Estate 579

Table 1: Nodes with the highest total degree in the Pearson (top), Spearman (middle) and
7 (bottom) MSTs. Bold rows are shared between all, italic rows are shared between two.
There is a strong overlap - 5 out of 10 are }?red between all 3 indicating that generally
they agree on which nodes are the most important, and 9 out of 10 are shared between
the rank MSTs.
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Figure 7: Correlation between node degrees from the MSTs. Left shows the correlation
between the degree of all nodes, while right shows only the correlation between the pe-
ripheries (defined as nodes with a degree of less than 5). Overall (left) we can see there
is relatively high agreement on the node degrees, although as above the trees diverge dur-
ing the financial crisis, while the reduction in correlation (with an average of 0.4) when
removing the hubs compared to the overall correlation (with an an average of 0.7) shows
most of the disagreement comes at the peripheries

On a sector note we can see the Industrials sector seems particularly
central in these MST's, with 5 of the top 10 in all being made up of companies
from this sector. The next closest is the Financials sector, making up 3 of
the top 10 in the Pearson and 7 MSTs and 2 in the Spearman MSTs. The
Materials and Real Estate have 1 entry in the top 10 for all 3 MSTs, and the
Consumer Discretionary appears once in the Spearman table.

From this we can look at how the centrality of a sector varies over time.
In particular we look at how the mean centrality varies by calculating the
centrality of all the nodes in a sector and taking the mean. This reduces
the effect of the different numbers of companies in each sector. To measure
this we use both degree centrality and betweenness centrality. Betweenness
centrality is calculated by looking at the fraction of shortest paths that pass
through a node, and allows us to get a different perspective on which edges are
regarded as important. The results are shown in Figures|8| (degree centrality)
and [9] (betweenness centrality).

Focusing on the mean sector degree centrality (Figure|8) we can see that
the Financials sector is important in all 3 MSTs. For the Pearson MSTs
it becomes important in 2004, and particularly important in 2008. For the
rank methods it becomes very important in both 2004 and 2008, but the
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peak in 2008 seems smaller. The Industrials sector is usually important for
most of the dataset, but it does seem more variable for the Pearson MSTs,
with a strong peak in 2012. This is less visible in the rank trees, particularly
the Spearman MSTs. The Communication Services sector is generally not
central in any of the trees, with brief exceptions for 2017 in the Pearson MST's
and 2011 in the Spearman and 7 MSTs. Another point of disagreement is the
Information Technology sector, which does not become significantly central
for the Pearson MSTs, but does for the rank trees, particularly during 2013.

Next we look at the mean sector betweenness centrality (Figure @ Com-
pared to the mean degree centrality there is a far larger spread of values -
looking at the legend the values go from 0 - 0.18 for betweenness centrality vs
0 - 0.0018 for the degree centrality. The peaks are also much more noticeable.
A particularly noteworthy peak is that of the Energy sector in the Pearson
MSTs during 2010, which is not shared in either of the rank methods. All
MSTs generally seem to regard the Financials sector as central, but there
is a strong peak for the 7 MSTs during 2002 that is less present for either
the Pearson or the Spearman MSTs. There are peaks for Real Estate and
Consumer Staples in the Pearson MSTs during 2018 that are not present in
the rank MSTs. All three pick up a period between 2009 and 2011 where the
centrality of the Materials sector increases.

In general it seems there more agreement between the Spearman and 7
MST's than between Pearson and either one of them. There is also less agree-
ment on mean sector centrality when using betweenness centrality vs degree
centrality. To quantify this further we calculate the Spearman correlation
between the mean centralities over time, and show the results in Tables
(degree centrality) and [3| (betweenness centrality).

For the degree centrality (Table[2]) the Spearman and 7 methods strongly
agree on the sector centralities, with a mean Spearman correlation of 0.925+
0.060. This is much weaker for the Pearson and 7 MSTs (0.594 + 0.185) and
the Pearson and Spearman MSTs (0.591 £ 0.196). The agreement for the
Communication Services sector is notably low between the Pearson and rank
MSTs, but even between the rank MSTSs it is the lowest of all the sectors.
However it is one of the smallest sectors, so the poor or excellent performance
of a single company is less likely to be hidden by other companies in the
sector. There is strong agreement in the Health Care, Consumer Staples,
Real Estate and Industrials sectors between all of the MSTs.

For the betweenness centrality (Table |3]) again there is a generally strong
agreement on the sector centralities between the Spearman and 7 MSTs,

14



Consumer
Discretionary

Communicatiol
Services

Energy

Information
Technology

Utilities

Consumer
Staples

Real Estate
Materials

Financials I-
Health Care

Industrials

2004 2006 2008 2010 2012 2014 2016 2018
0mz

(a) Pearson

Consumer
Discretionary

Communication
Services

Energy

Information
Technology
Utilities 0.008
Consumer
Staples

Real Estate

Material
aterials 0.006

Financials

Health Care

Industrials

0.004
2004 2006 2008 2010 2012 2014 2016 2018

(b) Spearman

Consumer

Discretionary 0.002

Communication
Services

Energy

Information
Technology

Utilities

Consumer
Staples

Real Estate

Materials

Financials

Health Care

Industrials

2004 2006 2008 2010 2012 2014 2016 2018
(c) 7

Figure 8: Mean degree centrla%ity for the sectors over time.
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Figure 9: Mean degree centrality for the sectors over time.
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Sector Pearson - Spearman | Pearson - 7 | Spearman - 7
Industrials 0.779 0.801 0.956
Health Care 0.768 0.754 0.973
Financials 0.664 0.655 0.962
Materials 0.391 0.538 0.893
Real Estate 0.715 0.664 0.942
Consumer Staples 0.824 0.810 0.977
Utilities 0.430 0.387 0.919
Information Technology 0.657 0.654 0.946
Energy 0.543 0.551 0.911
Communication Services 0.181 0.190 0.763
Consumer Discretionary 0.545 0.526 0.936

Table 2: Correlation between the mean degree centrality for each sector between the MSTs.
There seems to be reasonably broad agreement between all the MSTs on the centrality
of most sectors, with the exceptions of Communication Services and Materials. The rank
MSTs show a large amount of agreement, while the Pearson MSTs tend to differ more.

with the mean Spearman correlation between the sector centralities being
0.865 + 0.058. The Pearson - 7 mean correlation is 0.452 + 0.183 and the
Pearson - Spearman mean correlation is 0.44240.183, showing a much weaker
relationship. Again Communication Services has the lowest agreement be-
tween all of the methods, and there is low agreement between the centrality
of the Industrials, Energy and Financials sectors for the Pearson and rank
MSTs. These also have a large drop in agreement in betweenness centrality
compared to degree centrality. It is particularly notable as these sectors are
usually regarded as important and central to the US economy, and also as
there was relatively strong agreement in the mean degree centralities between
the MSTs for the Industrials sector. In general there is a drop in mean cor-
relation when using betweenness centrality as a measure when compared to
degree centrality. This implies that companies tend to take different positions
in the Pearson MSTs compared to the rank MSTs. There is however a much
greater range in the betweenness centralities than the degree centralities,
which may affect the correlation.

3.4. MST Topology

Having studied the stability of the trees over time and the importance
of various sectors, we now look if the structure of the MSTs differ using
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Sector Pearson - Spearman | Pearson - 7 | Spearman - 7
Industrials 0.254 0.259 0.895
Health Care 0.596 0.594 0.949
Financials 0.396 0.425 0.886
Materials 0.405 0.487 0.815
Real Estate 0.541 0.546 0.862
Consumer Staples 0.785 0.764 0.946
Utilities 0.540 0.563 0.893
Information Technology 0.392 0.395 0.778
Energy 0.316 0.379 0.803
Communication Services 0.109 0.067 0.802
Consumer Discretionary 0.527 0.492 0.889

Table 3: Correlation between the mean betweenness centrality for each sector between
the MSTs. There is a significant drop in the mean agreement of the betweenness sector
centralities compared to the degree sector centrality, particularly for the Industrials sector.
There is still generally high agreement between the rank MSTs, but the Pearson MSTs
seem to have a significant difference.

some network measures. We use the leaf fraction (fraction of nodes with
only 1 edge), exponent when fitting a power law to the degree distribution,
the average shortest path length and mean occupation layer (the mean of all
shortest paths from each node to the center of the tree). In this case we take
the center of the tree as the node with the largest degree. The plots of these
measures over time are shown in Figure [10]

From these we can see that irrelevant of the coefficient, the MSTs have
similar structure. All of the trees have a heavy tailed degree distribution,
with there being a high number of nodes with only one other edge and a small
number of edges with a large degree. We can see the structures change during
the financial crisis, with the leaf fraction and average shortest path length
decreasing, although there is no noticeable change for the mean occupation
layer.

3.5. MST Robustness

Finally we are interested in comparing the robustness of these correlation
coefficients. This can be done using a bootstrap based approach, in a similar
manner to Tumminello et al. [46] and Musciotto et al. [47]. Here we create
1000 pseudo-datasets using a circular bootstrap. A circular bootstrap is a
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Figure 10: Topological measures of the structure of the MSTs. From this we can see all the
correlation coefficients produce MSTs with very similar structures. Macroeconomic effects
are visible in the trees, with the average shortest path length and leaf fraction decreasing
during the financial crisis, although the mean occupation layer seems less sensitive.
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Method | Mean Difference | Correlation
Pearson 0.417 4+ 0.136 0.276
Spearman | 0.388 + 0.124 0.268
T 0.386 £+ 0.121 0.268

Table 4: Mean difference between MSTs constructed from the bootstrap datasets and
correlation between p-value and edge weight. The rank MSTs tend to select the same
edges slightly more from the bootstrap datasets than the Pearson MSTs, but the difference
is not large. None of the correlation coefficients have a particularly strong relationship
between p-value and edge weight.

type of block bootstrap where we select data from a continuous stretch of
time, and if the end of the dataset is reached we wrap round and start back
at the beginning. This tends to be more appropriate for time series data
compared to the classic bootstrap due to look ahead effects and potential
autocorrelation. With these pseudo-datasets we calculate the correlations
between assets and construct MSTs from these correlation matrices. Once
we have this set of MSTs, we can compare the edges present in them. Ideally
if there is no noise, the data is purely stationary and the methods robust
all these MSTs would be the same. Of course this is not the case in real
life. To run the bootstrap we take the first 1008 days of data and create
1000 bootstrapped datasets of 504 days. Firstly we measure the mean and
standard deviation of the fraction of difference in edge presence across the
trees. The results are shown in Table 4l From this we can see that the rank
MSTs select slightly more of the same edges, but the difference is not large.

We can gain a measure of how likely an edge is to exist in these MST's
by counting the number of times an edge exists in our forest of trees and
diving by the total number of bootstrap replications. This gives us a p-value
for the edge. Previous work [46] has shown that there is little relationship
between p-value and the edge weight in Pearson correlation based MSTs, so
we explore this for the other MSTs. The results are shown in Table[d Again
there seems to be little correlation between a p-value and the edge weight for
any coefficient, and all have a similar correlation between p-value and edge
weight.

Companies in the same sector tend to be more correlated than those in
different sectors and so we might expect those edges to have a larger p-value
than the inter sector ones. To measure this we take the mean of the p-
values of the edges in the tree inferred from the overall dataset for all edges,
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Method Total Intrasector edges | Intersector edges
Pearson | 0.682 £ 0.229 | 0.706 & 0.222 0.572 £ 0.230
Spearman | 0.705 £ 0.232 | 0.737 4+ 0.216 0.574 £ 0.253
T 0.705 £ 0.238 | 0.741 £ 0.215 0.556 £ 0.269

Table 5: Mean and standard deviation of p-values found for the edges from the MSTs
inferred from the first window of data. For all correlation methods intrasector edges are
more likely than intersector ones, but interestingly the rank-based correlation MSTs have
a slightly higher p-value for an intrasector edge than the Pearson MSTs.

intrasector edges and intersector edges. The results are shown in Table 5
From this we can see the rank MSTs have a larger total p-value compared
to Pearson MSTs, although the difference between is not very large. The
rank MSTs also have a larger mean p-value for intrasector edges compared
to the Pearson MSTs, although all of the differences are within the standard
deviations.

4. Conclusion

In this paper we have used the Pearson, Spearman and Kendall’s 7 corre-
lation coefficients to infer correlation matrices from stock returns, constructed
minimum spanning trees from these matrices and compared the robustness
and evolution of the trees over time. In general we have found the MSTs
constructed using the rank correlations (Spearman and Kendall’s 7) to be
more robust than those constructed with the Pearson correlation. They tend
to change less (notably during times of market stress), have edges that are
maintained for a longer time period, and tend to have slightly more of the
same edges selected when the reliability of the trees is tested using a circular
bootstrap. The different methods do however show strong agreement on the
hubs in the trees, but tend to disagree on the structure of the peripheries.

The rank MSTs in general show broad agreement on the mean centrality
of each sector, but the Pearson MSTs show a significant difference in which
sectors they regard as important. The agreement using degree centrality is
higher than using betweenness centrality, indicating that companies tend to
be found in different places on the trees in the Pearson MSTs compared to
the rank ones.

Despite this, the trees tend to have a similar topology, irrelevant of coef-
ficient and this topology tends to vary in a similar way over time for all three
methods.
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Finally we use a bootstrap to test the consistency of the edges selected
in the MSTs. We find the rank MSTSs select slightly more of the same edges
than the Spearman MSTs, but the difference is not large, and that there is
only a weak relationship between the strength of an edge and its likelihood
of being selected. In all of the trees intrasector edges are more likely to be
selected than intersector edges, and rank based trees tend to select slightly
more intrasector edges, but again this difference is small.

This shows that the heavy tails of financial returns have a big effect on
the construction of Pearson correlation based MSTs, and this is something
to be aware of when trying to draw conclusions from these trees. It therefore
may be worth also constructing MSTs using different correlation coefficients
for any problem to see if the conclusions drawn are valid for both sets. Gener-
ally the Spearman and Kendall’s 7 correlation coefficients tend to give similar
results, indicating that if computational resources are constrained then cal-
culating the Spearman correlation is sufficient. Future work could proceed in
several directions. A comparison of mutual information MSTs to these corre-
lation MST's to see how they differ could be interesting, or exploring different
filtration models, for instance the Planar Maximally Filtered Graph. Alter-
natively these comparisons could be performed with returns data from other
countries or assets, perhaps from data that is highly correlated and volatile,
for instance for returns from cryptocurrencies or developing nations.
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